Risk Factors Associated with Postpartum Hemorrhage in Western North Carolina

Stephanie T. Romero, MD, Shelley L. Galvin, MA, Maggie Harper, MD Mountain Area Health Education Center, Department of Obstetrics and Gynecology Asheville, North Carolina

Objective: The rate of post partum hemorrhage (PPH) is increasing in the US, Canada, Australia, and Europe. The etiologies of this increase have not been well-defined. Our objective was to use primary data sources to estimate the risk of PPH associated with patient variables and practice patterns.

Study Design: We examined two years of deliveries (2008-2009) of singleton, live births at a regional referral center utilizing a case-control design to assess differences in patient variables and practice patterns. We matched controls to cases, 2:1, by delivery route. We used Student *t* test, X^2 , Fisher exact test, and multivariate logistic regression to examine the relative contribution of risk factors to outcomes while controlling for known risk factors for PPH in order to elucidate any new risk factors apparent in our population. **Results**: We analyzed 269 cases and 538 controls; 75.1% of deliveries were vaginal and 24.9% were cesarean. Significant predictors included Hispanic ethnicity, BMI > 40, preeclampsia, post-date pregnancies, shoulder dystocia and manual removal of placenta. **Conclusions**: The results of this study confirm suspicions of an association between PPH and obesity (especially BMI \geq 40). Improved knowledge about the risk factors for PPH can inform inter-conception counseling and PPH preventive measures at delivery.

Keywords: Postpartum hemorrhage; obesity; risk factors

Introduction

Acute postpartum hemorrhage (PPH) is a major cause of maternal mortality and morbidity worldwide, and of the ½ million women who have a pregnancy related death from a preventable cause, an estimated 25% are due to PPH.¹ Etiologies of PPH include uterine atony, retained placental tissue, abnormal placentation, genital tract trauma, and coagulation abnormalities. Of these, the most common is uterine atony. The rate of PPH is reported to be increasing in the US, Canada, Australia, and Europe.²⁻⁴ The etiologies of this increase have not been well-defined. The recommendations from the International Postpartum Hemorrhage Collaborative Group include a call for more research into the potential risk factors for PPH, which they identified as "increased duration of labor, obesity, and changes in second and third stage management practice."³ Our objective was to use primary data sources to estimate the risk of PPH associated with patient variables and practice patterns.

Methods

We examined deliveries occurring between January 1, 2008 and December 31, 2009 at a regional referral center serving western North Carolina. We utilized a case-control design to assess differences in patient variables and practice patterns for the 24-month period. Potential cases of PPH were identified using ICD9 codes 666.10-666.14, and charts were reviewed individually to confirm whether or not they met the inclusion criteria. Deliveries, matched for route of delivery,

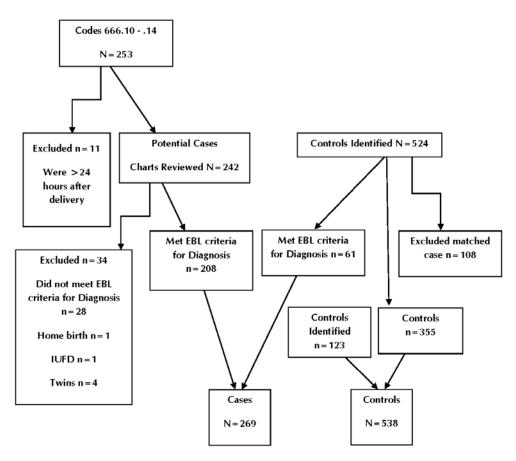
immediately preceding and following each case delivery were chosen as controls, and those charts reviewed to ensure that they did not meet criteria as a case themselves. Multifetal pregnancies were excluded. The inclusion criteria were:

- 1. Live births;
- 2. Hemorrhage within 24 hrs of delivery; and
- 3. Estimated blood loss (EBL) \geq 500mL for vaginal or \geq 1000mL for cesarean delivery.

Any patient identified by ICD-9 code as a case who did not meet inclusion criteria was removed from the analysis. Any patient chosen as a control who was found to meet criteria for postpartum hemorrhage was classified and analyzed as a case, and an alternate control was chosen to replace it. In addition, two controls matched to the newly designated case were identified.

If discrepancies in EBL were noted, the physician's birth note became the study criterion. Qualitative descriptions of blood loss were reviewed clinically to determine if total EBL during the 24-hour period exceeded cutoffs when indicated.

Demographic variables, obstetric characteristics and interventions were abstracted using a standard form. Frequency distributions of variables were compared between cases and controls using Student *t* test, X^2 , and Fisher exact test where appropriate. Multivariate logistic regression was used to examine the relative contribution of risk factors to outcome. We examined practice patterns and patient characteristics separately using variables identified as significantly different in univariate analyses. The final model combined significant predictors from the initial models and ultimately retained only significant predictors of PPH.


We controlled for known risk factors for PPH including prolonged 2nd stage of labor (nulliparas with anesthesia > 180 minutes, without > 120 minutes; multiparas with anesthesia > 120 minutes, without > 60 minutes), macrosomia (\geq 4000 gm), chorioamnionitis, and diabetes (as diagnosed or indicated by the attending physician) in order to elucidate any new risk factors apparent in our population. Analyses were conducted using SPSS 18.0.1.⁵

Results

After review of the charts, a total of 269 cases and 538 controls were included in the analyses (see Figure 1). Routes of delivery and total estimated blood loss are shown in Table 1. Overall 75.1% of deliveries were vaginal and 24.9% were cesarean.

Univariate analyses of participant characteristics indicated that cases were more likely to be minorities and to have larger body mass indices (BMI) at time of delivery (see Table 2). Cases were also more likely to be nulliparous, to have medical complications of any type (especialy pre-eclampsia or chorioamnionitis), and to receive magnesium sulfate in labor (see Table 3). Birth outcomes comparisons indicated cases were more likely to be post-term deliveries (>40 weeks). Twice as many infants with macrosomia were born to cases, and the incidence of shoulder dystocia was four times higher among cases than controls (see Table 4). Practice patterns were significantly different as cases underwent manual removal of the placenta and required pharmacotherapy and/or procedures to control bleeding more frequently than controls (see Table 4). The rate of induction of labor was not significantly different; the use of any oxytocin during labor, however, was greater in cases.

Table 1. Matched Routes of Deliveries and Estimated Blood Lo	Table	1. Matched	Routes of	Deliveries	and Estimated	Blood Los
--	-------	------------	------------------	------------	---------------	-----------

	Cases	Controls	
	N = 269	N = 538	
Delivery: Vaginal Delivery	202 (75.1)	404 (75.1)	
Spontaneous vaginal delivery	188 (69.9)	376 (69.9)	
Vacuum extraction	11 (4.1)	22 (4.1)	
Forceps	1 (0.4)	2 (0.4)	
Vaginal birth after cesarean delivery (VBAC)	2 (0.7)	4 (0.7)	
Delivery: Cesarean Delivery	67 (24.9)	134 (24.9)	
Primary cesarean (PC)	46 (17.1)	92 (17.1)	
Scheduled	4 (8.7 of PC)	8 (8.7 of PC)	
Repeat cesarean (RC)	21 (7.8)	42 (7.8)	
Failed VBAC	1 (4.8 of RC)	2 (4.8 of RC)	
Estimated Blood Loss (EBL): Vaginal Delivery	600 ml	300 ml (100	
	(500 – 3000 ml)	– 450 ml)	
Estimated Blood Loss (EBL): Cesarean Delivery	1225	700 ml	
	(1000 – 6500 ml)	(400 – 950 ml)	

Note. EBL presented as median (minimum-maximum)

Table 2: Fatient Socio demographic characteristics						
		Cases	Controls	Р		
		N=269	N = 538			
Age	≤19 years	29 (10.8)	56 (10.4)	0.472		
	20 – 34 years	213 (79.2)	412 (76.6)			
	\geq 35 years	27 (10)	70 (13)			
Race	White	187 (70.3)	428 (80.9)	0.002		
	Black	22 (8.3)	40 (7.6)			
	Hispanic	46 (17.3)	46 (8.7)			
	Other Minority	11 (4.1)	15 (2.8)			
	Unknown	3 (1.1)	9 (1.7)			
Relationship status				0.157		
	Partnered	144 (55.2)	312 (60.5)			
	Single	117 (44.8)	204 (39.5)			
Unknown		8 (3)	22 (4)			
Body Mass Index (BMI) @		31.4	29.9	0.005†		
delivery		(19.7-52.4)	(18.8-73.7)			
BMI categ	ory ≥40	28 (10.6)	47 (8.8)	0.012		
	35-39.99	41 (15.6)	64 (12)			
	30-34.99	94 (35.7)	154 (28.8)			
	< 30	100 (38)	269 (50.4)			
	Unknown	6 (2.2)	4 (0.7)			

Note. *Frequency (Percent); Chi square test

†Median (minimum-maximum); Mann-Whitney U test

	•	Cases	Controls	Р
		N = 269	N=538	
Previous deliveries	Nulliparous	150 (55.8)	248 (46.1)	0.010
	Multiparous	119 (44.2)	290 (53.9)	
Prenatal Medications				
Selective serotonin re	euptake inhibitors (SSRI)	13 (4.8)	23 (4.3)	0.718
	Anticoagulants	2 (0.7)	1 (0.2)	0.259*
Tocolytics	None	254 (94.1)	525 (97.2)	0.033
	Magnesium sulfate	14 (5.2)	11 (2)	
	Nifedipine	1 (0.4)	0	
	Turbutaline	1 (0.4)	4 (0.7)	
Co-morbid diagnoses				
Diabetes (Gesta	tional or pre-gestational)	27 (10)	34 (6.3)	0.060
	Pre-eclampsia	33 (12.3)	33 (6.1)	0.003
Anemia (<hb10< td=""><td>$.5) \le 23$ weeks gestation</td><td>29 (10.8)</td><td>37 (6.9)</td><td>0.056</td></hb10<>	$.5) \le 23$ weeks gestation	29 (10.8)	37 (6.9)	0.056
	Polyhydramnios	2 (0.7)	5 (0.9)	1.000*
	Coagulation disorder	3 (1.1%)	4(0.7)	0.692*
History	postpartum hemorrhage	1 (0.4)	2 (0.4)	1.000*
	Placental abnormality	12 (4.5)	11 (2)	0.052
	Chorioamnionitis	31 (11.5)	17 (3.2)	0.0001
	Ehlers Danlos.	1 (0.4)	0	0.157*
Any	of the above diagnoses	115 (42.8)	122 (22.7)	0.0001

Table 3. Antepartum Characteristics

Note. Chi square analysis unless otherwise indicated. *Fisher's Exact Test

Table 4. Practice Patterns and Delivery Outcomes							
	Cases	Controls	Р				
	N=269	N = 538					
Gestational age @ delivery			0.021				
Term: 37 – 40 weeks	159 (59.1)	359 (66.7)					
Postterm: \geq 40 weeks & 1 day	83 (30.9)	122 (22.7)					
Preterm: 34 – 36weeks & 6 days	18 (6.7)	48(8.9)					
Very preterm: \leq 33 weeks & 6 days	9 (3.3)	9 (1.7)					
Birth weight \geq 4000 grams	34 (12.8)	34 (6.3)	0.002				
< 4000 grams	232 (87.2)	504 (93.7)					
Unknown	3 (1.1)	0					
Anesthesia: Vaginal delivery None	36 (17.8)	67 (16.6)	0.586				
(n=606) Local	15 (7.4)	26 (6.4)					
Epidural	150 (74.3)	304 (75.2)					
Spinal or CSE	1 (0.5)	7 (1.7)					
Anesthesia: Cesarean delivery Epidural	33 (49.3)	67 (50)	0.085				
(n = 201) Spinal	28 (41.8)	64 (47.8)					
CSE	2 (3)	0					
General	4 (6)	3 (2.2)					
Oxytocin use in labor None	98 (36.4)	238 (44.2)					
Any	171 (69.8)	300 (61)	0.019				
Induction of labor	121 (45)	212 (39.4)	0.129				
Prolonged second stage of labor (n = 581)	20 (10.8)	37 (9.3)	0.580				
Shoulder dystocia	18 (6.7)	8 (1.5)	0.0001				
Severe Lacerations (3 rd or 4 th degree)	9 (4.5)	11 (2.7)	0.4				
Placental removal: Manual	79 (29.5)	115 (21.4)	0.011				
Uterotonics	159 (59.1)	6 (1.1)	0.0001				
(methylergonovine, prostaglandin, and/or							
misoprostol)							
Postpartum oxytocin	169 (72.8)	9 (1.7)	0.0001				
Curettage	12(4.5)	1 (0.2)	0.001*				
Hysterectomy	4 (1.5)	0	0.012*				
Transfusion	31 (11.5)	1 (0.2)	0.0001				

Table 4. Practice Patterns and Delivery Outcomes

Note. Chi square analysis unless otherwise indicated.

*Fisher's Exact Test

Multivariate logistic regression models are shown in Table 5 and 6 for practice patterns and patient characterizes, respectively. Among the three significant practice patterns examined, manual removal of the placenta was most strongly associated with PPH. With regard to patient characteristics, Hispanic ethnicity, nulliparity, BMI \geq 40, diagnosis of pre-eclampsia, delivery postterm, and shoulder dystocia increased the odds of PPH. The final model included all predictors except oxytocin (p=0.325) or tocolytics (p=186) in labor (see Table 7).

Table 5: Fractice Fatterns						
	Reference	OR	95% Cl	Р		
Tocolytics in labor	None	3.840	1.438-10.254	0.007		
Oxytocin in labor	None	1.514	1.018-2.251	0.041		
Manual removal	Spontaneous	6.279	2.789-14.135	0.001		
of placenta						

 Table 5. Practice Patterns

Note. Nagelkerke $R^2 = 0.129$

Table 6. Patient Characteristics

Table 0. Fatient Characteristics					
	Reference	OR	95% CI	Р	
Multiparity	Nulliparity	0.496	0.331-0.744	0.001	
Race/Ethnicity	White				
Other		1.930	0.535-6.958	0.315	
Black		1.225	0.598-2.507	0.579	
Hispanic		2.329	1.287-4.213	0.005	
BMI	< 30				
>40		2.158	1.102-4.227	0.025	
35-39.99		1.533	0.843-2.790	0.162	
30-34.99		1.294	0.820-2.042	0.267	
Pre-eclampsia	None	2.859	1.405-5.818	0.004	
Gestational age	37-40 weeks				
>40 weeks		1.732	1.115-2.689	0.014	
< 37 weeks		0.919	0.443-1.909	0.821	
Shoulder dystocia	None	3.340	1.272-8.767	0.014	
Nista Nisgalliarlia D ²	0 1 7 4				

Note. Nagelkerke $R^2 = 0.174$

Table 7. Final Model					
Reference	OR	95% Cl	Р		
Nulliparity	0.534	0.355-0.801	0.002		
White					
	1.902	0.534-6.778	0.321		
	1.365	0.664-2.808	0.397		
	2.481	1.370-4.492	0.003		
< 30					
	2.006	1.011-3.979	0.046		
	1.363	0.743-2.500	0.318		
	1.255	0.791-1.991	0.335		
None	3.275	1.593-6.735	.001		
37-40 weeks					
	1.791	1.146-2.800	0.011		
	1.035	0.495-2.164	0.927		
Spontaneous	6.202	2.661-14.453	.0001		
None	3.504	1.331-9.226	.011		
	Reference Nulliparity White <30 <30 None 37-40 weeks Spontaneous	Reference OR Nulliparity 0.534 White 1.902 1.365 2.481 <30	Reference OR 95% Cl Nulliparity 0.534 0.355-0.801 White 1.902 0.534-6.778 1.365 0.664-2.808 2.481 2.481 1.370-4.492 30 <30		

Table 7. Final Model

Note. Nagelkerke $R^2 = 0.208$

Discussion

The results of this study confirm the suspicions of Callaghan et al, in that we found an association between PPH and obesity (especially BMI \geq 40).³ The prevalence of obesity in the United States and world-wide is increasing.⁶ Other investigators have tried to link obesity to PPH. In one study, women with a BMI > 30 had decreased risk of PPH.⁷ Another study of over 3000 women did not find an association between obesity and PPH, although other causes of maternal morbidity and mortality were found to be associated with obesity.⁸ In contrast, a retrospective cohort study of over 11,000 nulliparous New Zealanders demonstrated obese women had an approximate two-fold risk of PPH regardless of mode of delivery.⁹ And another cohort study of over 1 million Swedish women found a significant correlation between maternal BMI and rates of PPH, particularly atonic PPH.¹⁰

Duration of labor is another one of the potential risk factors described by the International Postpartum Hemorrhage Collaborative Group, and we attempted to discern that, but the nature of the study made accurate evaluation of the first stage impossible due to the inconsistencies in charting the time of initiation of labor. Induction of labor, which is associated with an increased length of time in labor, was not a significant risk factor for PPH in our study (p=0.129). In contrast, any use of oxytocin, which combines both induction and augmentation of labor, was associated with a significant increase in PPH.

Improved knowledge about the risk factors for PPH can help providers in two ways. First, it is another tool in the evaluation and education of women who are not pregnant, and provides an opportunity to practice preventive medicine. Second, women who present to the hospital for delivery can be evaluated and if found to be at high risk for PPH, preventive measures can be instituted, such as the administration of prophylactic uterotonics. The effectiveness of such measures should be investigated in future studies.

References

- 1. WHO Recommendations for the Prevention of Postpartum Haemorrhage. Geneva: World Health Organization; October 2006.
- 2. Berg CJ et al. Overview of Maternal Morbidity During Hospitalization for Labor and Delivery in the United States; 1993-1997 and 2001-2005. Obstet Gynecol 2009; 113(5):1075-81.
- 3. Callaghan WM, Kuklina EV, Berg CJ. Trends in postpartum hemorrhage: United States, 1994-2006. Am J Obstet Gynecol 2010; 202(4):353.e1-6.
- 4. Knight M et al. Trends in postpartum hemorrhage in high resource countries: a review and recommendations from the International Postpartum Hemorrhage Collaborative Group. BMC Pregnancy Childbirth, 2009 Nov 27; 9:55.
- 5. SPSS Inc. Released 2009. PASW Statistics for Windows, Version 18.0. Chicago: SPSS Inc.
- 6. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and Trends in Obesity Among US Adults, 1999-2008. JAMA 2010 Jan 20; 303(3):235-241.
- 7. Paglia MJ et al. Body Mass Index and Severe Postpartum Hemorrhage. Gynecol Obstet Invest. Epub 2011 Sep 15.
- 8. Cedergren MI. Maternal Morbid Obesity and the Risk of Adverse Pregnancy Outcome. Obstet Gynecol 2004 Feb; 103(2):219-24.
- 9. Fyfe EM, Thompson JMD, Anderson NH, Groom KM, McCowan LM. Maternal obesity and postpartum hemorrhage after vaginal and caesarean delivery among nulliparous women at term: a retrospective cohort study. BMC Pregnancy Childbirth 2012 Oct 18; 12:112.
- 10. Blomberg M. Maternal Obesity and Risk of Postpartum Hemorrhage. Obstet Gynecol 2011 Sep; 118(3):561-8.

Disclosure: None of the authors have a conflict of interest. **Financial Support**: This study was underwritten by the MAHEC Department of Obstetrics and Gynecology

Paper presented at the NC OBGYN Society Meeting, Asheville, NC; April, 2011 Winner of the North Carolina Obstetrical and Gynecological Society Resident Research Award

Winner of the 2011 MAHEC Resident Research Day Audience Award

Reprints and Correspondence: Shelley L. Galvin, MA; MAHEC Department of Obstetrics and Gynecology, 119 Hendersonville Road, Asheville, NC 28803 Business 828.771.5501 Email: Shelley.Galvin@mahec.net